Discovery of Novel N-Substituted Prolinamido Indazoles as Potent Rho Kinase Inhibitors and Vasorelaxation Agents.
نویسندگان
چکیده
Inhibitors of Rho kinase (ROCK) have potential therapeutic applicability in a wide range of diseases, such as hypertension, stroke, asthma and glaucoma. In a previous article, we described the lead discovery of DL0805, a new ROCK I inhibitor, showing potent inhibitory activity (IC50 6.7 μM). Herein, we present the lead optimization of compound DL0805, resulting in the discovery of 24- and 39-fold more-active analogues 4a (IC50 0.27 μM) and 4b (IC50 0.17 μM), among other active analogues. Moreover, ex-vivo studies demonstrated that 4a and 4b exhibited comparable vasorelaxant activity to the approved drug fasudil in rat aortic rings. The research of a preliminary structure-activity relationship (SAR) indicated that the target compounds containing a β-proline moiety have improved activity against ROCK I relative to analogues bearing an α-proline moiety, and among the series of the derivatives with a β-proline-derived indazole scaffold, the inhibitory activity of the target compounds with a benzyl substituent is superior to those with a benzoyl substituent.
منابع مشابه
Rho Kinase Inhibitors as a Novel Treatment for Glaucoma and Ocular Hypertension
In an elegant example of bench-to-bedside research, a hypothesis that cells in the outflow pathway actively regulate conventional outflow resistance was proposed in the 1990s and systematically pursued, exposing novel cellular and molecular mechanisms of intraocular pressure (IOP) regulation. The critical discovery that pharmacologic manipulation of the cytoskeleton of outflow pathway cells dec...
متن کاملSynthesis of N2-(substituted benzyl)-3-(4-methylphenyl)indazoles as novel anti-angiogenic agents.
To search for novel compounds with potent anti-angiogenic activity, a series of N(1)-(substituted benzyl)-3-(4-methylphenyl)-1H-indazoles (16, 18, 20, 22, 24, 26, 28, 30, 32) and N(2)-(substituted benzyl)-3-(4-methylphenyl)-2H-indazoles (17, 19, 21, 23, 25, 27, 29, 31, and 33) were synthesized. The structures of these regioisomers were established by IR, UV, and NMR spectral data. 3-(4-Methylph...
متن کاملApplication of 3D-QSAR on a Series of Potent P38-MAP Kinase Inhibitors
One of the most applied methods in drug industry for development of new drugs is 3D-QSAR methodology. As p38-mitogen-activated protein kinase (p38-MAPK) plays a crucial role in regulating the production of such proinflammatory cytokines as tumor necrosis factor-α (TNF-α) and interleukin-1, emerging as an attractive target for new anti-inflammatory agents, we used a 3D-QSAR based method of Compa...
متن کاملNovel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کاملNovel N-2-(Furyl)-2-(chlorobenzyloxyimino) ethyl Piperazinyl Quinolones: Synthesis, Cytotoxic Evaluation and Structure-activity Relationship
Quinolone antibacterials are one of the most important classes of pharmacological agents known as potent inhibitors of bacterial DNA gyrase and topoisomerase IV that efficiently inhibit DNA replication and transcription by generating several double-stranded DNA break. Some quinolone derivatives demonstrated inhibitory potential against eukaryote topoismarase II and substantial dose-dependent cy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2017